MCAT and Organic Chemistry Study Guides, Videos, Cheat Sheets, tutoring and more

  • Tutoring
  • Organic Chem
    • Organic Chemistry Videos
    • Organic Chemistry Tutoring
    • Study Hall – Membership Site
  • MCAT
  • About
  • Contact
  • Tutoring
  • Organic Chem
    • Organic Chemistry Videos
    • Organic Chemistry Tutoring
    • Study Hall – Membership Site
  • MCAT
  • About
  • Contact

Drawing Chair Conformations and Ring Flips for Cyclohexane

October 3, 2014 By Leah4sci

Drawing chair conformations and ring flips for cyclohexaneStudying chair conformations is likely one of the trickiest visual topics in organic chemistry, perhaps second only to Fischer projections. Not only are you required to learn a 3-dimensional concept, but you also have to manipulate that 3-D molecule on 2-dimensional paper.

The average orgo student is not an artist, making this topic even trickier. In this article I'll show you a few quick and simple tricks to help you easily draw the standard hexagon, chair conformations and ring flips for cyclohexane.

When it comes to exams, you won't be graded on how ‘pretty' your chair looks. Instead your professor will look for clarity and the ability to distinguish your axial and equatorial substituents.

Drawing the Cyclohexane Hexagon

If there's one thing you learn in organic chemistry – it's how to draw a hexagon. Many students try to draw the entire thing at once, but the poor hexagon tends to look drunk and wobbly.

In fact, if you're starting to feel like the class is one big art lesson, read here: Organic Chemistry or Art Class?

Here's my approach:

  1. Draw 2 parallel lines
  2. Place a dot above the upper opening and another below the lower opening
  3. Connect the dots

drawing cyclohexane hexagon

Pretty? Not especially

But clear? Absolutely!

And that's what really matters.

As you get better you can combine steps 2 and 3 by simply visualizing the location of the dots.

Drawing the Cyclohexane Chair Conformation

bad chair conformation drawingThis is where the messiness and confusion arises. Most books will show a chair conformation slightly sideways, making it impossible to copy. Worse, it's really difficult to show which substituents are axial vs equatorial.

‘Bowties' as I like to call them, are ok for the computer generated chair conformation. Here is my simple version which my tutoring clients use on exams with great success.

Step 1:

Draw 2 parallel lines slightly offset from each other. Top left or top right will give you alternate chairs.

Step 2:

Place a dot above the upper opening, and another below the lower opening

Step 3:

Connect the dots

steps for drawing chair conformation cyclohexane

Kinda sounds like the directions for drawing a cyclohexane, doesn't it?

But the chair confirmation doesn't stop here. It's important to understand how to position your substituents. And even more important to show what is axial and what is equatorial.

So let's move on:

Step 4:

Identify the ‘up tip' OR ‘down tip' of your chair conformation, and draw a straight line up (up tip) or down (down tip) parallel to the y-plane. This is your first axial substituent.

drawing axial substituents on cyclohexane chair conformation

The chair conformation has alternating axial up, axial down… so once you have that single axial substituent move on to..

Step 5:

Alternate your axial substituents up and down all the way around your cyclohexane

Every carbon on the chair conformation has 1 substituent axial and the other equatorial. If axial is up equatorial is down, if equatorial is up then axial is down.

Step 6:

Pick any ONE carbon and locate its axial substituent. Draw the equatorial substituent up or down, the reverse of the axial substituent. But unlike the axial line, this one will start on the carbon and form a slight angle outward of the chair drawing. Do NOT draw these straight in the x or y plane.

drawing ring flip chair conformation cyclohexane

Adding substituents to your chair

This is my favorite part. I find students get so confused when they try to match the cyclohexane to the drawing.

I don't!

All I care about matching are the numbers.

Start with a blank chair conformation. Number the carbons in your cyclohexane and in your chair.

Clockwise or counterclockwise doesn't matter, as long as you use the same direction for both molecules.

converting hexagon to chair conformation

Then simply compare.

Identify the carbon number for the first substituent, if it's wedged add it to the up position.

If the substituent is dashed, add it to the down substituent (dashes down)

In using this trick you simply match the numbers and let your molecule quickly fall into place

drawing axial and equatorial chair conformation substituents

Drawing a Ring Flip

The logic and reasoning behind the chair conformation ring flip will be discussed in my upcoming chair conformations video series. (stay tuned) However, drawing the ring flip doesn't have to be as hard as students think.

Yes the flip happens when one molecule changes its conformation to another, but the key to drawing the flip successfully is to… Ignore the first chair!

Counter-intuitive, I know, but trust me this method works.

Once you have your first chair, determine if your parallel lines have upper right or upper left.

Draw another chair using the steps described above, but change the direction of your top line.

drawing ring flip for chair conformations

If your first chair has the upper line on the right, draw the second chair with the upper line left.

Ignore your first chair as you follow the rules for drawing and adding substituents.

Now for the fun part, determine the new location for the up-tip carbon by ‘pulling down' your ‘up-tip' or raising up your ‘down-tip' Number your new chair, and play ‘match the numbers'.

drawing ring flip with substituents for chair conformation

If there's a substituent up on carbon #1, it says up on carbon #1. If it's down it stays down.

The only thing that changes with your ring flip is the location of axial and equatorial.

Remember this:

Up stays up, down stays down

Axial becomes equatorial and equatorial becomes axial

cyclohexan chair conformation ring flip

Hopefully you've been drawing chairs as you read this article. What do you think? does the idea of drawing chair conformations and ring flips still sound as scary as it used to? Let me know by leaving a comment below

Watch the video below for a complete demonstration of what we learned above.

Ready to tackle some chair conformations? Learn about their structure, stability, flips and more in the Cyclohexane Chair Conformations Tutorial Video Series.

Would a Model Kit help you? Watch How to Use Your Organic Chemistry Model Kit.

After you've been through the tutorial, don't forget to test your understanding with the Chair Conformations Quiz!

Filed Under: Chair Conformations Tagged With: axial, chair conformations, chairs, cyclohexane, drawing chair conformations, drawing compounds, equatorial, hexagon, ring flip

3 Month MCAT Plan

What does a 3-month MCAT Study Plan entail? Click to Read/Download

3 month mcat study plan leah4sci

Can I help you find a topic?

Download my Free Organic Chemistry Cheat Sheets by clicking on the image below



MCAT Tutorials, Videos & More

MCAT Home Page
Scroll down for orgo resources
MCAT Math Without a Calculator
MCAT Physics
MCAT Chemistry
MCAT Biology
MCAT Biochemistry
MCAT CARS / Critical Reading
MCAT Resources, Tips & More

Organic Chemistry Tutorials & Videos

Orgo Syllabus Companion
- Gen Chem Foundation for Orgo
- Orgo Basics Foundation
- Resonance Structures
- Naming Organic Compounds
- Acids and Bases
- Newman Projections
- Chair Conformations
- Chirality and Stereochemistry
- Fischer Projections
- Intro to Mechanisms
- Alkene Reactions
- Alkyne Reactions
- Free Radical Reactions
- Substitution Elimination Reactions
- Diels Alder
- Aromaticity & Electrophilic Aromatic Substitution (EAS)
- Alcohols
- Oxidation and Reduction
- Acetal / Ketal
- Enolate Reactions
- Proton NMR Spectroscopy

Organic Chemistry Study Guide Cheat Sheets

2025 MCAT Test Dates

Click image below for test + score release dates and more

Radicals: Reactions, Stability Hybridization+

Click for New Tutorial: All about Free Radicals

Free Radicals in Organic Chemistry - Hybridization, Stability, Resonance, Reactions and Mechanism Videos

MCAT Students Come Work With Me

Work with me to figure out exactly what YOU need to ace your MCAT

Option 1: Strategy, tutorials, my help every step of the way in the MCAT Study Hall
[click for details]

Option 2 One-on-one Private MCAT Tutoring

Orgo Students: Come Work With Me

Work with me to ace your Organic Chemistry Course
Option 1: Join me for bimonthly live review/Q & A Sessions, 50+ Hours of Topic-Specific review/practice sessions, direct access to me and so much more... [click for details]

Option 2 One-on-one Private Tutoring

Organic Chemistry Reference Material and Cheat Sheets

Alkene Reactions Overview Cheat Sheet – Organic Chemistry

The true key to successful mastery of alkene reactions lies in practice practice practice. However, … [Read More...]

Click for additional cheat sheets

MCAT Tutorials

mcat math without a calculator 1 play

Introduction To MCAT Math Without A Calculator

While the pre-2015 MCAT only tests you on science and verbal, you are still required to perform … [Read More...]

Click for additional MCAT tutorials

Organic Chemistry Tutorial Videos

KET Keto enol tautomerization reaction and mechanism leah4sci

Keto Enol Tautomerization Reaction and Mechanism

Keto Enol Tautomerization or KET, is an organic chemistry reaction in which ketone and enol … [Read More...]

Click for additional orgo tutorial videos

Copyright © 2025 · Leah4Sci - All Rights Reserved. · Sitemap · Log in